Login
|
New Account
AAAAAA
ITA
ENG
Results:
1-25
|
26-50
|
51-75
|
76-100
|
>>
Table of contents of journal:
*Machine learning
Results: 1-25/435
Kernel methods: Current research and future directions
Authors:
Cristianini, N Campbell, C Burges, C
Citation:
N. Cristianini et al., Kernel methods: Current research and future directions, MACH LEARN, 46(1-3), 2002, pp. 5-9
On a connection between kernel PCA and metric multidimensional scaling
Authors:
Williams, CKI
Citation:
Cki. Williams, On a connection between kernel PCA and metric multidimensional scaling, MACH LEARN, 46(1-3), 2002, pp. 11-19
Bayesian methods for support vector machines: Evidence and predictive class probabilities
Authors:
Sollich, P
Citation:
P. Sollich, Bayesian methods for support vector machines: Evidence and predictive class probabilities, MACH LEARN, 46(1-3), 2002, pp. 21-52
Hierarchical learning in polynomial support vector machines
Authors:
Risau-Gusman, S Gordon, MB
Citation:
S. Risau-gusman et Mb. Gordon, Hierarchical learning in polynomial support vector machines, MACH LEARN, 46(1-3), 2002, pp. 53-70
A probabilistic framework for SVM regression and error bar estimation
Authors:
Gao, JB Gunn, SR Harris, CJ Brown, M
Citation:
Jb. Gao et al., A probabilistic framework for SVM regression and error bar estimation, MACH LEARN, 46(1-3), 2002, pp. 71-89
On the dual formulation of regularized linear systems with convex risks
Authors:
Zhang, T
Citation:
T. Zhang, On the dual formulation of regularized linear systems with convex risks, MACH LEARN, 46(1-3), 2002, pp. 91-129
Choosing multiple parameters for support vector machines
Authors:
Chapelle, O Vapnik, V Bousquet, O Mukherjee, S
Citation:
O. Chapelle et al., Choosing multiple parameters for support vector machines, MACH LEARN, 46(1-3), 2002, pp. 131-159
Training invariant support vector machines
Authors:
Decoste, D Scholkopf, B
Citation:
D. Decoste et B. Scholkopf, Training invariant support vector machines, MACH LEARN, 46(1-3), 2002, pp. 161-190
Support vector machines for classification in nonstandard situations
Authors:
Lin, Y Lee, Y Wahba, G
Citation:
Y. Lin et al., Support vector machines for classification in nonstandard situations, MACH LEARN, 46(1-3), 2002, pp. 191-202
An analytic center machine
Authors:
Trafalis, TB Malyscheff, AM
Citation:
Tb. Trafalis et Am. Malyscheff, An analytic center machine, MACH LEARN, 46(1-3), 2002, pp. 203-223
Linear programming boosting via column generation
Authors:
Demiriz, A Bennett, KP Shawe-Taylor, J
Citation:
A. Demiriz et al., Linear programming boosting via column generation, MACH LEARN, 46(1-3), 2002, pp. 225-254
Large scale kernel regression via linear programming
Authors:
Mangasarian, OL Musicant, DR
Citation:
Ol. Mangasarian et Dr. Musicant, Large scale kernel regression via linear programming, MACH LEARN, 46(1-3), 2002, pp. 255-269
Efficient SVM regression training with SMO
Authors:
Flake, GW Lawrence, S
Citation:
Gw. Flake et S. Lawrence, Efficient SVM regression training with SMO, MACH LEARN, 46(1-3), 2002, pp. 271-290
A simple decomposition method for support vector machines
Authors:
Hsu, CW Lin, CJ
Citation:
Cw. Hsu et Cj. Lin, A simple decomposition method for support vector machines, MACH LEARN, 46(1-3), 2002, pp. 291-314
Feasible direction decomposition algorithms for training support vector machines
Authors:
Laskov, P
Citation:
P. Laskov, Feasible direction decomposition algorithms for training support vector machines, MACH LEARN, 46(1-3), 2002, pp. 315-349
Convergence of a generalized SMO algorithm for SVM classifier design
Authors:
Keerthi, SS Gilbert, EG
Citation:
Ss. Keerthi et Eg. Gilbert, Convergence of a generalized SMO algorithm for SVM classifier design, MACH LEARN, 46(1-3), 2002, pp. 351-360
The relaxed online maximum margin algorithm
Authors:
Li, Y Long, PM
Citation:
Y. Li et Pm. Long, The relaxed online maximum margin algorithm, MACH LEARN, 46(1-3), 2002, pp. 361-387
Gene selection for cancer classification using support vector machines
Authors:
Guyon, I Weston, J Barnhill, S Vapnik, V
Citation:
I. Guyon et al., Gene selection for cancer classification using support vector machines, MACH LEARN, 46(1-3), 2002, pp. 389-422
Text categorization with support vector machines. How to represent texts in input space ?
Authors:
Leopold, E Kindermann, J
Citation:
E. Leopold et J. Kindermann, Text categorization with support vector machines. How to represent texts in input space ?, MACH LEARN, 46(1-3), 2002, pp. 423-444
Efficient construction of regression trees with range and region splitting
Authors:
Morimoto, Y Ishii, H Morishita, S
Citation:
Y. Morimoto et al., Efficient construction of regression trees with range and region splitting, MACH LEARN, 45(3), 2001, pp. 235-259
Using iterated bagging to debias regressions
Authors:
Breiman, L
Citation:
L. Breiman, Using iterated bagging to debias regressions, MACH LEARN, 45(3), 2001, pp. 261-277
Accelerating EM for large databases
Authors:
Thiesson, B Meek, C Heckerman, D
Citation:
B. Thiesson et al., Accelerating EM for large databases, MACH LEARN, 45(3), 2001, pp. 279-299
Relative loss bounds for multidimensional regression problems
Authors:
Kivinen, J Warmuth, MK
Citation:
J. Kivinen et Mk. Warmuth, Relative loss bounds for multidimensional regression problems, MACH LEARN, 45(3), 2001, pp. 301-329
Learning with maximum-entropy distributions
Authors:
Mansour, Y Schain, M
Citation:
Y. Mansour et M. Schain, Learning with maximum-entropy distributions, MACH LEARN, 45(2), 2001, pp. 123-145
Robust learning with missing data
Authors:
Ramoni, M Sebastiani, P
Citation:
M. Ramoni et P. Sebastiani, Robust learning with missing data, MACH LEARN, 45(2), 2001, pp. 147-170
Risultati:
1-25
|
26-50
|
51-75
|
76-100
|
>>