AAAAAA

   
Results: 1-22 |
Results: 22

Authors: Boschi-Muller, S Azza, S Branlant, G
Citation: S. Boschi-muller et al., E-coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide, PROTEIN SCI, 10(11), 2001, pp. 2272-2279

Authors: Marchal, S Branlant, G
Citation: S. Marchal et G. Branlant, Engineered nonphosphorylating glyceraldehyde 3-phosphate dehydrogenase at position 268 binds hydroxylamine and hydrazine as acyl acceptors, EUR J BIOCH, 268(22), 2001, pp. 5764-5770

Authors: Marchal, S Cobessi, D Rahuel-Clermont, S Tete-Favier, F Aubry, A Branlant, G
Citation: S. Marchal et al., Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans, CHEM-BIO IN, 130(1-3), 2001, pp. 15-28

Authors: Roitel, O Bec, N Lange, R Balny, C Branlant, G
Citation: O. Roitel et al., Pressure denaturation of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, BIOC BIOP R, 283(2), 2001, pp. 347-350

Authors: Rogniaux, H Sanglier, S Strupat, K Azza, S Roitel, O Ball, V Tritsch, D Branlant, G Van Dorsselaer, A
Citation: H. Rogniaux et al., Mass spectrometry as a novel approach to probe cooperativity in multimericenzymatic systems, ANALYT BIOC, 291(1), 2001, pp. 48-61

Authors: Tete-Favier, F Cobessi, D Boschi-Muller, S Azza, S Branlant, G Aubry, A
Citation: F. Tete-favier et al., Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 angstrom resolution, STRUCTURE, 8(11), 2000, pp. 1167-1178

Authors: Tete-Favier, F Cobessi, D Leonard, GA Azza, S Talfournier, F Boschi-Muller, S Branlant, G Aubry, A
Citation: F. Tete-favier et al., Crystallization and preliminary X-ray diffraction studies of the peptide methionine sulfoxide reductase from Escherichia coli, ACT CRYST D, 56, 2000, pp. 1194-1197

Authors: Cobessi, D Tete-Favier, F Marchal, S Branlant, G Aubry, A
Citation: D. Cobessi et al., Structural and biochemical investigations of the catalytic mechanism of anNADP-dependent aldehyde dehydrogenase from Streptococcus mutans, J MOL BIOL, 300(1), 2000, pp. 141-152

Authors: Charron, C Talfournier, F Isupov, MN Littlechild, JA Branlant, G Vitoux, B Aubry, A
Citation: C. Charron et al., The crystal structure of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 angstrom resolution, J MOL BIOL, 297(2), 2000, pp. 481-500

Authors: Boschi-Muller, S Azza, S Sanglier-Cianferani, S Talfournier, F Van Dorsselear, A Branlant, G
Citation: S. Boschi-muller et al., A sulfenic acid enzyme intermediate is involved in the catalytic mechanismof peptide methionine sulfoxide reductase from Escherichia coli, J BIOL CHEM, 275(46), 2000, pp. 35908-35913

Authors: Fillinger, S Boschi-Muller, S Azza, S Dervyn, E Branlant, G Aymerich, S
Citation: S. Fillinger et al., Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium, J BIOL CHEM, 275(19), 2000, pp. 14031-14037

Authors: Marchal, S Rahuel-Clermont, S Branlant, G
Citation: S. Marchal et al., Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans, BIOCHEM, 39(12), 2000, pp. 3327-3335

Authors: Cartier, A Brown, D Maigret, B Boschi-Muller, S Rahuel-Clermont, S Branlant, G
Citation: A. Cartier et al., Modelling the active site of glyceraldehyde-3 phosphate dehydrogenase withthe LSCF formalism, THEOR CH AC, 101(1-3), 1999, pp. 241-245

Authors: Charron, C Talfournier, F Isupov, MN Branlant, G Littlechild, JA Vitoux, B Aubry, A
Citation: C. Charron et al., Crystallization and preliminary X-ray diffraction studies of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus, ACT CRYST D, 55, 1999, pp. 1353-1355

Authors: Levashov, P Orlov, V Boschi-Muller, S Talfournier, F Asryants, R Bulatnikov, I Muronetz, V Branlant, G Nagradova, N
Citation: P. Levashov et al., Thermal unfolding of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase studied by differential scanning calorimetry, BBA-PROT ST, 1433(1-2), 1999, pp. 294-306

Authors: Cobessi, D Tete-Favier, F Marchal, S Azza, S Branlant, G Aubry, A
Citation: D. Cobessi et al., Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans, J MOL BIOL, 290(1), 1999, pp. 161-173

Authors: Schmalhausen, EV Nagradova, NK Boschi-Muller, S Branlant, G Muronetz, VI
Citation: Ev. Schmalhausen et al., Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities, FEBS LETTER, 452(3), 1999, pp. 219-222

Authors: Talfournier, F Colloc'h, N Mornon, JP Branlant, G
Citation: F. Talfournier et al., Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis, EUR J BIOCH, 265(1), 1999, pp. 93-104

Authors: Roitel, O Sergienko, E Branlant, G
Citation: O. Roitel et al., Dimers generated from tetrameric phosphorylating glyeceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus are inactive but exhibit cooperativity in NAD binding, BIOCHEM, 38(49), 1999, pp. 16084-16091

Authors: Marchal, S Branlant, G
Citation: S. Marchal et G. Branlant, Evidence for the chemical activation of essential Cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans, BIOCHEM, 38(39), 1999, pp. 12950-12958

Authors: Eyschen, J Vitoux, B Marraud, M Cung, MT Branlant, G
Citation: J. Eyschen et al., Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD(+) nicotinamide but does not experience A-specific hydride transfer, ARCH BIOCH, 364(2), 1999, pp. 219-227

Authors: Boschi-Muller, S Branlant, G
Citation: S. Boschi-muller et G. Branlant, The active site of phosphorylating glyceraldehyde-3-phosphate dehydrogenase is not designed to increase the nucleophilicity of a serine residue, ARCH BIOCH, 363(2), 1999, pp. 259-266
Risultati: 1-22 |