Citation: Y. Leroy et Pp. Castaneda, Bounds on the self-consistent approximation for nonlinear media and implications for the second-order method, CR A S IIB, 329(8), 2001, pp. 571-577
Citation: Pp. Castaneda, Second-order theory for nonlinear dielectric composites incorporating field fluctuations - art. no. 214205, PHYS REV B, 6421(21), 2001, pp. 4205
Citation: Mv. Nebozhyn et al., Variational self-consistent estimates for cubic viscoplastic polycrystals:the effects of grain anisotropy and shape, J MECH PHYS, 49(2), 2001, pp. 313-340
Authors:
Bornert, M
Masson, R
Castaneda, PP
Zaoui, A
Citation: M. Bornert et al., Second-order estimates for the effective behaviour of viscoplastic polycrystalline materials, J MECH PHYS, 49(11), 2001, pp. 2737-2764
Citation: M. Kailasam et al., Porous metals with developing anisotropy: Constitutive models, computational issues and applications to deformation processing, CMES-COMP M, 1(2), 2000, pp. 105-118
Citation: Mv. Nebozhyn et al., Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, CR AC S IIB, 328(1), 2000, pp. 11-17
Citation: Pp. Castaneda et E. Tiberio, A second-order homogenization method in finite elasticity and applicationsto black-filled elastomers, J MECH PHYS, 48(6-7), 2000, pp. 1389-1411
Citation: Pp. Castaneda et E. Tiberio, Homogenization estimates for hyperelastic composites and particle-reinforced rubbers, CR AC S IIB, 327(13), 1999, pp. 1297-1304
Citation: Mv. Nebozhyn et Pp. Castaneda, The second-order procedure: exact vs approximate results for isotropic, two-phase composites, J MECH PHYS, 47(10), 1999, pp. 2171-2185