Citation: B. Bialecki et A. Karageorghis, A Legendre spectral Galerkin method for the biharmonic Dirichlet problem, SIAM J SC C, 22(5), 2001, pp. 1549-1569
Citation: Ys. Smyrlis et al., Some aspects of the one-dimensional version of the method of fundamental solutions, COMPUT MATH, 41(5-6), 2001, pp. 647-657
Citation: A. Karageorghis, The method of fundamental solutions for the calculation of the eigenvaluesof the Helmholtz equation, APPL MATH L, 14(7), 2001, pp. 837-842
Citation: Z. Belhachmi et al., Spectral element discretization of the circular driven cavity, part II: The bilaplacian equation, SIAM J NUM, 38(6), 2001, pp. 1926-1960
Citation: B. Bialecki et A. Karageorghis, A legendre spectral collocation method for the biharmonic Dirichlet problem, ESAIM-M MOD, 34(3), 2000, pp. 637-662
Citation: A. Karageorghis et G. Fairweather, The method of fundamental solutions for axisymmetric elasticity problems, COMPUT MECH, 25(6), 2000, pp. 524-532
Citation: C. Bernardi et A. Karageorghis, Spectral element discretization of the circular driven cavity, part I: TheLaplace equation, SIAM J NUM, 36(5), 1999, pp. 1435-1465
Citation: Jr. Berger et A. Karageorghis, The method of fundamental solutions for heat conduction in layered materials, INT J NUM M, 45(11), 1999, pp. 1681-1694
Citation: A. Karageorghis et G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, INT J NUM M, 44(11), 1999, pp. 1653-1669
Citation: A. Karageorghis et G. Fairweather, The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, J ACOUST SO, 104(6), 1998, pp. 3212-3218