Citation: B. Najman et al., THE ASYMPTOTIC-BEHAVIOR OF THE EIGENVALUES OF A SINGULARLY PERTURBED LINEAR PENCIL, SIAM journal on matrix analysis and applications (Print), 20(2), 1998, pp. 420-427
Citation: H. Langer et B. Najman, INSTABILITY OF SINGULAR CRITICAL-POINTS OF DEFINITIZABLE OPERATORS, Integral equations and operator theory, 28(1), 1997, pp. 60-71
Citation: B. Najman, RESOLVENT ESTIMATES FOR SINGULARLY PERTURBED ELLIPTIC-OPERATORS IN HOLDER SPACES, Mathematische Nachrichten, 184, 1997, pp. 245-257
Citation: B. Curgus et B. Najman, PRESERVATION OF THE RANGE UNDER PERTURBATIONS OF AN OPERATOR, Proceedings of the American Mathematical Society, 125(9), 1997, pp. 2627-2631
Citation: B. Curgus et B. Najman, THE OPERATOR (SGN X)D(2) DX(2) IS SIMILAR TO A SELF-ADJOINT OPERATOR IN L(2)(R)/, Proceedings of the American Mathematical Society, 123(4), 1995, pp. 1125-1128
Citation: Tj. Azizov et al., NONDEGENERATE JORDAN SUBSPACES OF SELF-ADJOINT OPERATORS IN INDEFINITE SPACES, Linear algebra and its applications, 207, 1994, pp. 37-48
Citation: P. Binding et B. Najman, A VARIATIONAL PRINCIPLE IN KREIN SPACE, Transactions of the American Mathematical Society, 342(2), 1994, pp. 489-499
Citation: B. Najman et Q. Ye, A MINIMAX CHARACTERIZATION FOR EIGENVALUES OF HERMITIAN PENCILS .2., Linear algebra and its applications, 191, 1993, pp. 183-197