Login
|
New Account
AAAAAA
ITA
ENG
Results:
1-6
|
Results: 6
An introduction to kernel-based learning algorithms
Authors:
Muller, KR Mika, S Ratsch, G Tsuda, K Scholkopf, B
Citation:
Kr. Muller et al., An introduction to kernel-based learning algorithms, IEEE NEURAL, 12(2), 2001, pp. 181-201
Soft margins for AdaBoost
Authors:
Ratsch, G Onoda, T Muller, KR
Citation:
G. Ratsch et al., Soft margins for AdaBoost, MACH LEARN, 42(3), 2001, pp. 287-320
Engineering support vector machine kernels that recognize translation initiation sites
Authors:
Zien, A Ratsch, G Mika, S Scholkopf, B Lengauer, T Muller, KR
Citation:
A. Zien et al., Engineering support vector machine kernels that recognize translation initiation sites, BIOINFORMAT, 16(9), 2000, pp. 799-807
Robust ensemble learning
Authors:
Ratsch, G Scholkopf, B Smola, AJ Mika, S Onoda, T Muller, KR
Citation:
G. Ratsch et al., Robust ensemble learning, ADV NEUR IN, 2000, pp. 207-220
Input space versus feature space in kernel-based methods
Authors:
Scholkopf, B Mika, S Burges, CJC Knirsch, P Muller, KR Ratsch, G Smola, AJ
Citation:
B. Scholkopf et al., Input space versus feature space in kernel-based methods, IEEE NEURAL, 10(5), 1999, pp. 1000-1017
Using support vector machines for time series prediction
Authors:
Muller, KR Smola, AJ Ratsch, G Scholkopf, B Kohlmorgen, J Vapnik, V
Citation:
Kr. Muller et al., Using support vector machines for time series prediction, ADVANCES IN KERNEL METHODS, 1999, pp. 243-253
Risultati:
1-6
|