Citation: P. Deuflhard et al., A CONVERGENCE ANALYSIS OF ITERATIVE METHODS FOR THE SOLUTION OF NONLINEAR ILL-POSED PROBLEMS UNDER AFFINELY INVARIANT CONDITIONS, Inverse problems (Print), 14(5), 1998, pp. 1081-1106
Citation: B. Hofmann et O. Scherzer, LOCAL ILL-POSEDNESS AND SOURCE CONDITIONS OF OPERATOR-EQUATIONS IN HILBERT-SPACES, Inverse problems (Print), 14(5), 1998, pp. 1189-1206
Citation: O. Scherzer, A MODIFIED LANDWEBER ITERATION FOR SOLVING PARAMETER-ESTIMATION PROBLEMS, Applied mathematics & optimization, 38(1), 1998, pp. 45-68
Citation: A. Neubauer et O. Scherzer, REGULARIZATION FOR CURVE REPRESENTATIONS - UNIFORM-CONVERGENCE FOR DISCONTINUOUS SOLUTIONS OF ILL-POSED PROBLEMS, SIAM journal on applied mathematics (Print), 58(6), 1998, pp. 1891-1900
Citation: O. Scherzer, DENOISING WITH HIGHER-ORDER DERIVATIVES OF BOUNDED VARIATION AND AN APPLICATION TO PARAMETER-ESTIMATION, Computing, 60(1), 1998, pp. 1-27
Citation: B. Blaschke et al., ON CONVERGENCE-RATES FOR THE ITERATIVELY REGULARIZED GAUSS-NEWTON METHOD, IMA journal of numerical analysis, 17(3), 1997, pp. 421-436
Citation: M. Hanke et al., A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS, Numerische Mathematik, 72(1), 1995, pp. 21-37
Citation: O. Scherzer, CONVERGENCE CRITERIA OF ITERATIVE METHODS BASED ON LANDWEBER ITERATION FOR SOLVING NONLINEAR PROBLEMS, Journal of mathematical analysis and applications, 194(3), 1995, pp. 911-933
Citation: Hw. Engl et al., UNIQUENESS AND STABLE DETERMINATION OF FORCING TERMS IN LINEAR PARTIAL-DIFFERENTIAL EQUATIONS WITH OVERSPECIFIED BOUNDARY DATA, Inverse problems, 10(6), 1994, pp. 1253-1276
Citation: Hw. Engl et al., A REGULARIZATION SCHEME FOR AN INVERSE PROBLEM IN AGE-STRUCTURED POPULATIONS, Journal of mathematical analysis and applications, 182(3), 1994, pp. 658-679
Citation: O. Scherzer et al., OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FORSOLVING NONLINEAR III-POSED PROBLEMS, SIAM journal on numerical analysis, 30(6), 1993, pp. 1796-1838
Citation: O. Scherzer, CONVERGENCE-RATES OF ITERATED TIKHONOV REGULARIZED SOLUTIONS OF NONLINEAR III - POSED PROBLEMS, Numerische Mathematik, 66(2), 1993, pp. 259-279
Citation: O. Scherzer, THE USE OF MOROZOV DISCREPANCY PRINCIPLE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR ILL-POSED PROBLEMS, Computing, 51(1), 1993, pp. 45-60