THE CONVERGENCE OF CHAOTIC INTEGRALS

Citation
O. Bauer et R. Mainieri, THE CONVERGENCE OF CHAOTIC INTEGRALS, Chaos, 7(3), 1997, pp. 361-367
Citations number
15
Categorie Soggetti
Mathematics,"Physycs, Mathematical",Mathematics
Journal title
ChaosACNP
ISSN journal
10541500
Volume
7
Issue
3
Year of publication
1997
Pages
361 - 367
Database
ISI
SICI code
1054-1500(1997)7:3<361:TCOCI>2.0.ZU;2-N
Abstract
We review the convergence of chaotic integrals computed by Monte Carlo simulation, the trace method, dynamical zeta function, and Fredholm d eterminant on a simple one-dimensional example: the parabola repeller. There is a dramatic difference in convergence between these approache s. The convergence of the Monte Carlo method follows an inverse power law, whereas the trace method and dynamical zeta function converge exp onentially, and the Fredholm determinant converges faster than any exp onential. (C) 1997 American Institute of Physics.