AN ERROR ESTIMATE FOR THE APPROXIMATE SOLUTION OF A MULTIDIMENSIONAL CONSERVATION LAW EQUATION BY AN IMPLICIT FINITE-VOLUME SCHEME

Authors
Citation
M. Ghilani, AN ERROR ESTIMATE FOR THE APPROXIMATE SOLUTION OF A MULTIDIMENSIONAL CONSERVATION LAW EQUATION BY AN IMPLICIT FINITE-VOLUME SCHEME, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 324(3), 1997, pp. 343-348
Citations number
8
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
324
Issue
3
Year of publication
1997
Pages
343 - 348
Database
ISI
SICI code
0764-4442(1997)324:3<343:AEEFTA>2.0.ZU;2-L
Abstract
In this Note we present an error estimate for the approximate solution of the nonlinear hyperbolic equation u(t) + div(f(u(x, t))v(x)) = 0 b y an implicit finite volume scheme. We show that the error is of order root k+root h, where h and k are respectively the sizes of the space and the time steps parameters. A generalisation of this result to an a rbitrary consistent monotone numerical flux is presented in [4]. The c onvergence of this scheme is possible with k/h (CFL condition) going t o infinity.