Am. Bond et al., VOLTAMMETRIC, SPECULAR REFLECTANCE INFRARED, AND X-RAY ELECTRON-PROBECHARACTERIZATION OF REDOX AND ISOMERIZATION PROCESSES ASSOCIATED WITHTHE [MN(CO)(2)(ETA(3)-P2P')BR](+ 0) (P2P'=(PH2P(CH2)(2))(2)PPH), [MN(CO)(2)(ETA(3)-P3P')BR](+/0) (P3P'=(PH2PCH2)(3)P), AND [(MN(CO)(2)(ETA(2)-DPE)BR)(2)(MU-DPE)](2+/0) (DPE=PH2P(CH2)(2)PPH2) SOLID-STATE SYSTEMS/, Organometallics, 16(23), 1997, pp. 5006-5014
Extremely well defined voltammetric responses are obtained for both ox
idation of microcrystalline mononuclear trans- and cis,mer-Mn(CO)(2)(e
ta(3)-P2P')Br (P2P' = {Ph2P(CH2)(2)}(2)PPh) and cis,mer-Mn(CO)(2)(eta(
3)-P3P')Br (P3P' = {Ph2PCH2}(3)P) and binuclear cis,fac-{Mn(CO)(2)(eta
(2)-dpe)Br}(2)(mu-dpe) (dpe = Ph2P(CH2)(2)PPh2) and reduction of catio
nic trans-[Mn(CO)(2)(eta(3)-P2P')Br]BF4, trans-[Mn(CO)(2)(eta(3)-P3P')
Br]BF4, and ans-[{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)](BF4)(2) when th
ey are attached to a graphite electrode and placed in water containing
either 0.1 M NaCl or KCl as the electrolyte. The combination of acces
s to species in different oxidation states and different isomeric form
s, as well as mononuclear and binuclear species, enables the rates of
isomerization and the extent of electronic communication between the m
etal centers to be evaluated in the solid state and compared to data i
n organic solvent systems previously reported. The voltammetric data,
combined with specular reflectance IR and X-ray electron probe data, e
stablished that the following processes occur at the graphite electrod
e-microcrystal-water (electrolyte) interface (subscript ''s'' denotes
solid): trans-Mn(CO)(2)(eta(3)-P2P')Br-s + Cl- reversible arrow trans-
[Mn(CO)(2)(eta(3)-P2P')Br]Cl-s + e(-); cis,mer-Mn(CO)(2)(eta(3)-P2P')B
r-s + Cl- reversible arrow cis,mer-[MN(CO)(2)(eta(3)-P2P')Br]Cl-s + e(
-) --> trans-[Mn(CO)(2)(eta(3)-P2P')Br]Cl-s; trans-Mn(CO)(2)(eta(3)-P3
P')Br-s + Cl- reversible arrow trans-[Mn(CO)(2)(eta(3)-P3P')Br]Cl-s e(-); cis,mer-Mn(CO)(2)(eta(3)-P3P')Br-s + Cl- reversible arrow cis,me
r-[Mn(CO)(2)(eta(3)-P3P')Br]Cl-s + e(-) --> trans-[Mn(CO)(2)(eta(3)-P3
P')Br]Cl-s; trans-{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)(s) + 2Cl(-) rev
ersible arrow trans-[{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)]Cl-2 s + 2e(
-); cis,fac-{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)(s) + 2 Cl- reversible
arrow cis,fac-[{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)]Cl-2 s + 2e(-) --
> trans-[{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)]Cl-2 s. The reaction pat
hways in organic solvents are generally analogous. However, the rates
of isomerization are slower in the solid state, and shapes of voltammo
grams and potentials differ significantly. Interestingly, in the binuc
lear [{Mn)CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)](2+/0) system, no intermedi
ate [{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)](+) species are observed in
the solid state, implying that the metal centers are oxidized or reduc
ed at the same potentials, unlike the case in the solution phase, wher
e the [{Mn(CO)(2)(eta(2)-dpe)Br}(2)(mu-dpe)](2+/+) and [{Mn(CO)(2)(eta
(2)-dpe)Br}(2)(mu-dpe)](+/0) redox couples are well separated. This re
sult implies that no significant communication occurs between the meta
l centers in the solid state redox processes.