A high-resolution calculation of strongly time-dependent thermal conve
ction in the upper mantle with non-Newtonian, temperature-dependent rh
eology shows that, for an effective Rayleigh number of around 10(6), e
xtremely fast upwellings, at times exceeding 10 m/yr, can be generated
a few hundred kilometers below the lithosphere. There is a clear sepa
ration of timescales between this fast jet and the more slowly convect
ing mantle. Within this fast vertical shear layer is embedded a therma
l boundary layer with a width of the order of 50 km. The development o
f the fast non-Newtonian upwelling is characterized by the growth of t
he plume head to a large enough size, before the plume takes off rapid
ly at a depth of around 350 km. Upon impinging the base of the lithosp
here, this fast plume thins the lithosphere and the flow then becomes
a horizontally moving hot sheet, extending out for around 1000 km. Thi
s scenario is found to repeat itself at the same location about 10 Myr
after the first plume impingement.