HOMOGENEITY IN INTEGRAL-REPRESENTATIONS FOR EFFECTIVE PROPERTIES OF COMPOSITE-MATERIALS

Authors
Citation
R. Sawicz, HOMOGENEITY IN INTEGRAL-REPRESENTATIONS FOR EFFECTIVE PROPERTIES OF COMPOSITE-MATERIALS, Journal of mathematical physics, 36(12), 1995, pp. 6737-6745
Citations number
21
Categorie Soggetti
Mathematical Method, Physical Science","Physycs, Mathematical
ISSN journal
00222488
Volume
36
Issue
12
Year of publication
1995
Pages
6737 - 6745
Database
ISI
SICI code
0022-2488(1995)36:12<6737:HIIFEP>2.0.ZU;2-8
Abstract
The effective complex conductivity sigma of an n-component composite material is considered. Recently; an integral representation that trea ts the component conductivities sigma(1),...,sigma(n) symmetrically wa s developed. This representation has the advantage that the moments of the positive measure in the integral are directly related to the coef ficients in a perturbation expansion of sigma around a homogeneous me dium. However, the admissible class of measures has been difficult to characterize, due to the condition that sigma is a homogeneous functi on of the component conductivities. Here, this admissible class is cha racterized in terms of linear relations among the moments associated w ith tetrahedra in Fourier space Z(n). The homogeneity is used to deriv e a new formula for sigma in the two-component case, in which sigma* for general media is expressed in terms of the conductivities of lamin ates of second rank. (C) 1995 American Institute of Physics.