Bz. Shen et Kk. Tzeng, A CODE DECOMPOSITION APPROACH FOR DECODING CYCLIC AND ALGEBRAIC-GEOMETRIC CODES, IEEE transactions on information theory, 41(6), 1995, pp. 1969-1987
Citations number
45
Categorie Soggetti
Information Science & Library Science","Engineering, Eletrical & Electronic
An approach based on code decomposition and partial transform for cons
tructing algorithms for decoding cyclic codes and algebraic-geometric
(AG) codes is introduced, A general decoding procedure applicable to a
rbitrary linear codes and their subfield subcodes is then developed, I
n particular, we have developed algorithms for error-and-erasure decod
ing of cyclic codes up to their actual maximum distance, error-and-era
sure decoding of AG codes up to their designed minimum distance, and d
ecoding of subfield subcodes of AG codes (geometric BCH codes), Moreov
er, a generalization of geometric BCH codes is introduced. It is shown
by an example that for a simple class of AG codes, the so-called one-
point codes, this generalization brings a better estimate of their min
imum distance, It is also shown that the algorithms developed in this
paper can be applied to decode these codes up to their estimated minim
um distance.