Af. Izmailov et As. Myerson, GRAVITY-INDUCED FORMATION OF CONCENTRATION GRADIENTS IN SUPERSATURATED BINARY-SOLUTIONS, Physica. A, 224(3-4), 1996, pp. 503-532
Experimental and theoretical studies of the formation of solute concen
tration gradient in supersaturated binary solutions in a gravitational
held were carried out. The formation of solute concentration gradient
was associated with the gravity induced redistribution of subcritical
solute clusters. The birth-death process of the new solute-rich phase
domains (subcritical solute clusters) was described in terms of the t
ime-dependent Ginzburg-Landau model developed for metastable state rel
axation in binary (solute + solvent) non-critical solutions in the pre
sence of a gravitational held. A new mathematical Ansatz was developed
for solution of the model equations. This Ansatz has allowed to appro
ach for the first time the following important problems: (A) Microstru
cture of solute distribution inside of the subcritical solute clusters
. The analytical results obtained demonstrate that solute inside of th
e subcritical solute clusters is heterogeneously distributed with a sp
atially periodic structure. (B) Macrostructure of the solute subcritic
al clusters distribution in a gravitational field. The subcritical sol
ute clusters are found to be distributed heterogeneously in a gravitat
ional held. This heterogeneity, which is due to the heterogeneous birt
h-death process of the subcritical solute clusters in a gravitational
held, initiates a noticeable solute concentration gradient in vertical
columns of supersaturated binary solutions. An analysis and compariso
n of theoretical results and experimental data related to the solute c
oncentration gradient formation in a gravitational field are presented
. It is also demonstrated that the critical radius of solute clusters
(radius of nucleation) and induction time are gravity-dependent.