GENERALIZED MINIMUM-VARIANCE ADAPTIVE-CONTROL AND PARAMETER CONVERGENCE FOR STOCHASTIC-SYSTEMS

Authors
Citation
D. Down et Rh. Kwong, GENERALIZED MINIMUM-VARIANCE ADAPTIVE-CONTROL AND PARAMETER CONVERGENCE FOR STOCHASTIC-SYSTEMS, International Journal of Control, 63(1), 1996, pp. 147-160
Citations number
17
Categorie Soggetti
Controlo Theory & Cybernetics","Robotics & Automatic Control
ISSN journal
00207179
Volume
63
Issue
1
Year of publication
1996
Pages
147 - 160
Database
ISI
SICI code
0020-7179(1996)63:1<147:GMAAPC>2.0.ZU;2-R
Abstract
Two stochastic adaptive control schemes, the stochastic gradient and m odified least squares, are studied. We consider these for scalar ARMAX systems with general input delays. First, when the algorithms are bas ed on generalized minimum variance control with reference tracking, su fficient conditions for stability and optimality are found. This is do ne using martingale convergence analysis. Secondly, we examine paramet er convergence for each of the algorithms, and establish conditions fo r convergence of the parameter estimates to a random multiple of the t rue parameters.