A NEW SEMICLASSICAL INITIAL-VALUE METHOD FOR FRANCK-CONDON SPECTRA

Citation
Ar. Walton et De. Manolopoulos, A NEW SEMICLASSICAL INITIAL-VALUE METHOD FOR FRANCK-CONDON SPECTRA, Molecular physics, 87(4), 1996, pp. 961-978
Citations number
32
Categorie Soggetti
Physics, Atomic, Molecular & Chemical
Journal title
ISSN journal
00268976
Volume
87
Issue
4
Year of publication
1996
Pages
961 - 978
Database
ISI
SICI code
0026-8976(1996)87:4<961:ANSIMF>2.0.ZU;2-9
Abstract
A new semiclassical initial value method is derived for the calculatio n of bound-bound Franck-Condon spectra. The method combines the frozen Gaussian approximation of Herman and Kluk with the cellular dynamics algorithm of Heller, taking advantage of the best features of both app roaches. In particular, it is immune to both the problems associated w ith chaotic trajectories that are encountered in the Herman-Kluk metho d and the problems associated with caustic singularities that can be e ncountered in the cellular dynamics method. Example applications to so me model two- and three-dimensional bound state problems show that the new method is both accurate and efficient, and moreover that the effo rt that is required to calculate a bound-bound Franck-Condon spectrum semiclassically does not appear to increase significantly with the dim ensionality of the problem.