D. Orgad et S. Levit, COULOMB DRAG OF EDGE EXCITATIONS IN THE CHERN-SIMONS THEORY OF THE FRACTIONAL QUANTUM HALL-EFFECT, Physical review. B, Condensed matter, 53(12), 1996, pp. 7964-7969
Long-range Coulomb interaction between the edges of a Hall bar changes
the nature of the gapless edge excitations. Instead of independent mo
des propagating in opposite directions on each edge as expected for a
shea-range interaction one finds elementary excitations living simulta
neously on both edges, i.e., composed of correlated density waves prop
agating in the same direction on opposite edges. We discuss the micros
copic features of this Coulomb drag of excitations in the fractional q
uantum Hall regime within the framework of the bosonic Chern-Simons La
ndau-Ginzburg theory. The dispersion law of these excitations is nonli
near and depends on the distance between the edges as well as on the c
urrent that flows through the sample. The latter dependence indicates
a possibility of parametric excitation of these modes. The bulk distri
butions of the density and currents of the edge excitations differ sig
nificantly for short- and long-range interactions.