Kc. Kiwiel et K. Murty, CONVERGENCE OF THE STEEPEST DESCENT METHOD FOR MINIMIZING QUASI-CONVEX FUNCTIONS, Journal of optimization theory and applications, 89(1), 1996, pp. 221-226
Citations number
14
Categorie Soggetti
Operatione Research & Management Science",Mathematics,"Operatione Research & Management Science
To minimize a continuously differentiable quasiconvex function f: R(n)
-->R, Armijo's steepest descent method generates a sequence x(k+1)=x(k
)-t(k) del f(x(k)), where t(k)>0. We establish strong convergence prop
erties of this classic method: either x(k)-->(x) over bar, s.t. del f(
(x) over bar)=0; or arg min f=empty set, parallel to x(k) parallel to-
->infinity, and f(x(k))down arrow inf f. We also discuss extensions to
other line searches.