M. Deaconu et S. Wantz, BEHAVIOR OF THE FIRST HITTING TIME FOR A STRONGLY INWARD DIFFUSION, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 322(8), 1996, pp. 757-762
Let y is an element of R and (X(t)(y);t greater than or equal to 0) be
the solution of the one-dimensional SDE: X(t)(y) = y + B-t - 1/2 inte
gral(0)(t) u(X(s)(y))ds, where the drift -u is strongly inward (cf. (H
-1) and (H-2) given below). We study the asymptotic behaviour of E(exp
alpha T-x(y)), for y --> infinity, y greater than or equal to x great
er than or equal to 0 and T-x(y) = inf{t greater than or equal to 0;X(
t)(y) = x}.