W. Allegretto et A. Barabanova, POSITIVITY OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH NONLOCAL TERMS, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 126, 1996, pp. 643-663
In this paper we study a nonlocal problem for a second-order partial d
ifferential equation which depends on a parameter eta. We prove the ex
istence of critical values 0 < <(eta)over bar> and 0 > <(eta)under bar
> such that for all <(eta)under bar> less than or equal to eta less th
an or equal to <(eta)over bar> and for all non-negative right-hand sid
es, our problem has nonnegative solutions. We obtain a formula for eta
(0), the maximal possible value of <(eta)over bar>, and find the exact
value of <eta(>)0 for spherical Omega. We also study the correspondin
g eigenvalue problem. At the end of the paper, we consider the applica
tion of our results to the nonlinear system describing the distributio
n of temperature and potential in a microsensor.