T. Banks et L. Susskind, NUMBER OF STATES OF 2-DIMENSIONAL CRITICAL STRING THEORY, Physical review. D. Particles and fields, 54(2), 1996, pp. 1677-1681
We discuss string theory vacua which have the wrong number of spacetim
e dimensions, and give a crude argument that vacua with more than four
large dimensions are improbable. We then turn to two-dimensional vacu
a, which naively appear to violate Bekenstein's entropy principle. A c
lassical analysis shows that the naive perturbative counting of states
is unjustified. All excited states of the system have strong coupling
singularities which prevent us from concluding that they really exist
. A speculative interpretation of the classical solutions suggests onl
y a finite number of states will be found in regions bounded by a fini
te area. We also argue that the vacuum degeneracy of two-dimensional c
lassical string theory is removed in quantum mechanics. The system app
ears to be in a Kosterlitz-Thouless phase. This leads to the conclusio
n that it is also improbable to have only two large spacetime dimensio
ns in string theory. However, we note that, unlike our argument for hi
gh dimensions, our conclusions about the ground state have neglected t
wo-dimensional quantum gravitational effects, and are at best incomple
te.