Two models for the change in the lambda-dependent exchange-correlation
energy upon atomization Delta E(xc,lambda) = E(xc,lambda)(atoms) - E(
xc,lambda)(molecule) are proposed, where E(sc,lambda) = [psi(lambda)\<
(V)over cap (ee)>)\psi(lambda)] - integral d(3)r d(3)r' rho(r)rho(r')/
2\r - r'\. The wavefunction psi(lambda) yields the ground-state densit
y rho and minimizes (T) over cap + <lambda(V)over cap (ee)>. These mod
els (Delta E(xc,lambda)(model)) make use of the exact E(x) and general
ized gradient approximations (GGAs) to E(xc). The construction of the
simplest model is verified by calculating the exact d Delta E(xc,lambd
a)/d lambda\(lambda=0) from density functional perturbation theory and
comparing it to d Delta E(xc,lambda)(model)/d lambda\(lambda=0). For
systems with strong static correlation, explicit inclusion of d Delta
E(xc,lambda)/d lambda\(lambda=0) further improves the approximation to
Delta E(xc,lambda). Atomization energies calculated from Delta E(xc,l
ambda)(model) show a significant improvement over GGA.