AN ERROR ESTIMATOR FOR THE NUMERICAL-SOLUTION OF DAES USING A SPECIAL-CLASS OF ONE-STEP METHODS

Authors
Citation
S. Adam, AN ERROR ESTIMATOR FOR THE NUMERICAL-SOLUTION OF DAES USING A SPECIAL-CLASS OF ONE-STEP METHODS, Zeitschrift fur angewandte Mathematik und Mechanik, 76, 1996, pp. 335-336
Citations number
5
Categorie Soggetti
Mathematics,"Mathematical Method, Physical Science",Mechanics,Mathematics
ISSN journal
00442267
Volume
76
Year of publication
1996
Supplement
1
Pages
335 - 336
Database
ISI
SICI code
0044-2267(1996)76:<335:AEEFTN>2.0.ZU;2-E
Abstract
Error estimators for Runge-Kutta and Rosenbrock methods to solve semi- explicit problems of index 1 are considered. The basis of these error estimators are asymptotic expansions of the global discretization erro r. The main. error terms of each of the asymptotic expansions satisfy a linear DAE of index 1, called error-DAE. Using a condition on the pr incipal error function this DAE can be solved for the main error terms . This condition results in practice in further conditions for the def ining parameters of the method. Numerical results are presented.