THE FLAT PHASE OF CRYSTALLINE MEMBRANES

Citation
Mj. Bowick et al., THE FLAT PHASE OF CRYSTALLINE MEMBRANES, Journal de physique. I, 6(10), 1996, pp. 1321-1345
Citations number
53
Categorie Soggetti
Physics
Journal title
ISSN journal
11554304
Volume
6
Issue
10
Year of publication
1996
Pages
1321 - 1345
Database
ISI
SICI code
1155-4304(1996)6:10<1321:TFPOCM>2.0.ZU;2-Z
Abstract
We present the results of a high-statistics Monte Carlo simulation of a phantom crystalline (fixed-connectivity) membrane with free boundary . We verify the existence of a flat phase by examining lattices of siz e up to 128(2). The Hamiltonian of the model is the sum of a simple sp ring pair potential, with no hard-core repulsion, and bending energy. The only free parameter is the bending rigidity kappa. In-plane elasti c constants are not explicitly introduced. We obtain the remarkable re sult that this simple model dynamically generates the elastic constant s required to stabilize the flat phase. We present measurements of the size (Flory) exponent nu and the roughness exponent zeta. We also det ermine the critical exponents eta and eta(u) describing the scale depe ndence of the bending rigidity (kappa(q) similar to q(-eta)) and the i nduced elastic constants (lambda(q) similar to mu(q) similar to q(eta u)). At bending rigidity kappa = 1.1, we find nu = 0.95(5) (Hausdorff dimension d(H) = 2/nu = 2.1(1)), zeta = 0.64(2) and eta(u) = 0.50(1). These results are consistent with the scaling relation zeta = (2 + eta (u))/4. The additional scaling relation eta = 2(1 - zeta) implies eta = 0.72(4). A direct measurement of eta from the power-law decay of the normal-normal correlation function yields eta approximate to 0.6 on t he 128(2) lattice.