DIFFUSION-MODEL OF DECHANNELING BASED ON THE BOLTZMANN-EQUATION - 3 REGIMES OF ENERGETIC PARTICLE MOTION IN CRYSTALS

Citation
Ya. Kashlev et Nm. Sadykov, DIFFUSION-MODEL OF DECHANNELING BASED ON THE BOLTZMANN-EQUATION - 3 REGIMES OF ENERGETIC PARTICLE MOTION IN CRYSTALS, Physica status solidi. b, Basic research, 197(1), 1996, pp. 19-29
Citations number
38
Categorie Soggetti
Physics, Condensed Matter
ISSN journal
03701972
Volume
197
Issue
1
Year of publication
1996
Pages
19 - 29
Database
ISI
SICI code
0370-1972(1996)197:1<19:DODBOT>2.0.ZU;2-Z
Abstract
The generalized local Boltzmann equation is derived for the distributi on function of energetic particles interacting with the thermal vibrat ions of the lattice. On using the Boltzmann collision term the particl e energy losses A(epsilon(perpendicular to)) and the diffusion functio n B(epsilon(perpendicular to)) are obtained. The functions A(epsilon(p erpendicular to)) and B(epsilon(perpendicular to)) have singularities (fracture, peak) connected with the difference of the contributions of tile particles moving in the regimes of channeling, quasichanneling, and random motion.