Jh. Xu et al., GINZBURG-LANDAU EQUATIONS AND STRUCTURES OF VORTICES IN A SUPERCONDUCTOR WITH D(X)2(-Y)2 SYMMETRY, Zhongguo wuli xuekan, 34(2), 1996, pp. 379-387
The structures of a single vortex and vortex lattice in a superconduct
or with d(x)2(-y)2 symmetry are studied self-consistently employing ne
wly derived Ginzburg-Landau equations. Near a single vortex, we found
that an s-wave component of the order parameter is always induced, and
it causes the local magnetic field distribution and the d-wave order
parameter to have a four-fold anisotropy. The magnitude of the induced
s-wave component depends on the relative strength between the on-site
repulsive Coulomb interaction V-s aud the d-wave pairing interaction
V-d. It is shown that there is a strong correlation between the struct
ure of a single vortex and the shape of the vortex lattice. For modera
te values of V-s/V-d our numerical calculation indicates that the stru
cture of the vortex lattice is always oblique as long as the profile o
f the local magnetic field around a single vortex has a four-fold symm
etry. This happens usually for temperatures well below T-c. When tempe
ratures are very close to T-c or V-s/V-d >> 1, the local magnetic fiel
d distribution is isotropic and the vortex lattice becomes triangular.
The comparison of the present result with the measurements of the vor
tex lattice structure using small angle neutron scattering on YBa2Cu3O
7 samples will be discussed.