A HOMOTOPY ALGORITHM FOR 2-PARAMETER EIGENVALUE PROBLEMS

Authors
Citation
M. Shimasaki, A HOMOTOPY ALGORITHM FOR 2-PARAMETER EIGENVALUE PROBLEMS, Zeitschrift fur angewandte Mathematik und Mechanik, 76, 1996, pp. 675-676
Citations number
2
Categorie Soggetti
Mathematics,"Mathematical Method, Physical Science",Mechanics,Mathematics
ISSN journal
00442267
Volume
76
Year of publication
1996
Supplement
2
Pages
675 - 676
Database
ISI
SICI code
0044-2267(1996)76:<675:AHAF2E>2.0.ZU;2-B
Abstract
We present a homotopy algorithm for a certain class of two-parameter e igenvalue problems[1,2] and give theoretical background of the method. We consider the following two-parameter eigenvalue problem: T(1)x(1) = lambda B(1)z(1) + kappa mu C(1)x(1) (1) T(2)x(2) = kappa lambda B(2) x(2) + mu C(2)x(2), (2) where matrices T-i (i = 1, 2) are n x n irredu cible real symmetric tridiagonal matrices, and matrices B-i, C-i (i = 1,2) are nonsingular diagonal matrices with diagonal elements of the s ame sign. kappa (kappa is an element of [0, 1]) is a given constant, l ambda,mu are eigenvalues to be computed, and x(1),x(2) are correspondi ng eigen vectors satisfying normalizing conditions \x(1)(t)B(1)x(1)\ = 1, \x(2)(t)C(2)x(2)\ = 1. We assume the following condition, which we call the 'definiteness condition': 1 - kappa(2)(x(1)(t)C(1)x(1))(x(2) (t)B(2)x(2)) > 0. (3) We show that if the definiteness condition is sa tisfied, we can trace homotopy curves starting from n(2) points which can be easily computed, and can reach eigenvalues of the original two- parameter eigenvalue problem. The method is particularly suitable for parallel computation.