ON THE BLOWUPS OF NUMERICAL GODEAUX SURFACES

Authors
Citation
D. Kotschick, ON THE BLOWUPS OF NUMERICAL GODEAUX SURFACES, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 320(5), 1995, pp. 577-580
Citations number
12
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
320
Issue
5
Year of publication
1995
Pages
577 - 580
Database
ISI
SICI code
0764-4442(1995)320:5<577:OTBONG>2.0.ZU;2-Q
Abstract
We give a short proof of the following result: Let X be a complex surf ace of general type. If the canonical divisor of the minimal model of X has selfintersection = 1, then X is not diffeomorphic to a rational surface. Our proof is the natural extension of the argument given in [ 5] for the case when X is minimal. This argument also gives informatio n about the non-existence of certain smooth embeddings of a-spheres in X, if X has geometric genus zero.