L. Almeida et F. Bethuel, TOPOLOGICAL METHODS FOR THE GINZBURG-LAND AU EQUATION, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 320(8), 1995, pp. 935-939
We consider the Ginzburg-Landau equation [GRAPHICS] where Omega is a d
omain in R(2), g : delta Omega --> C is such that \g\ = 1 om delta Ome
ga, and epsilon > 0 is a parameter. Using topological arguments we sho
w that if \deg(g)\ greater than or equal to 2 and epsilon is sufficien
tly small, then (1) has at least three distinct solutions.