TOPOLOGICAL METHODS FOR THE GINZBURG-LAND AU EQUATION

Citation
L. Almeida et F. Bethuel, TOPOLOGICAL METHODS FOR THE GINZBURG-LAND AU EQUATION, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 320(8), 1995, pp. 935-939
Citations number
13
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
320
Issue
8
Year of publication
1995
Pages
935 - 939
Database
ISI
SICI code
0764-4442(1995)320:8<935:TMFTGA>2.0.ZU;2-I
Abstract
We consider the Ginzburg-Landau equation [GRAPHICS] where Omega is a d omain in R(2), g : delta Omega --> C is such that \g\ = 1 om delta Ome ga, and epsilon > 0 is a parameter. Using topological arguments we sho w that if \deg(g)\ greater than or equal to 2 and epsilon is sufficien tly small, then (1) has at least three distinct solutions.