THE POISSON VORONOI TESSELLATION .2. EDGE LENGTH DISTRIBUTION-FUNCTIONS

Authors
Citation
L. Muche, THE POISSON VORONOI TESSELLATION .2. EDGE LENGTH DISTRIBUTION-FUNCTIONS, Mathematische Nachrichten, 178, 1996, pp. 271-283
Citations number
9
Categorie Soggetti
Mathematics, General",Mathematics
Journal title
ISSN journal
0025584X
Volume
178
Year of publication
1996
Pages
271 - 283
Database
ISI
SICI code
0025-584X(1996)178:<271:TPVT.E>2.0.ZU;2-9
Abstract
This paper presents a method for the determination of the distribution function of the length of the 'typical' edge of the Poisson Voronoi t essellation. The method is based on distributional properties of the c onfiguration of the centres in the neighbourhood of the 'typical' vert ex. The distribution and density functions of the edge lengths are giv en in double integral form for various dimensions. Analogous character istics are considered for two-dimensional sections through higher-dime nsional Poisson Voronoi tessellations.