Y. Zhang et Rh. Fillingame, CHANGING THE ION-BINDING SPECIFICITY OF THE ESCHERICHIA-COLI H-TRANSPORTING ATP SYNTHASE BY DIRECTED MUTAGENESIS OF SUBUNIT-C(), The Journal of biological chemistry, 270(1), 1995, pp. 87-93
Most F1F0 type ATP synthases, including that in Escherichia coli, use
H+ as the coupling ion for ATP synthesis. However, the structurally re
lated F1F0 ATP synthase in Propionigenium modestum uses Na+ in stead.
The binding site for Na+ resides in the F-0 sector of the P. modestum
enzyme. We postulated that Na+ might interact with subunit c of F-0. S
ubunit c of P. modestum and E. coli are reasonably homologous (19% ide
ntity) but show striking variations around the H+-translocating, dicyc
lohexylcarbodiimide-reactive carboxyl (Asp(61) in E. coli). Several hy
drophobic residues around Asp(61) were replaced with polar residues ac
cording to the P. modestum sequence in the hope that the polar replace
ments might provide liganding groups for Na+. One mutant from 31 diffe
rent mutation combinations did generate an active enzyme that binds Li
+, the combination being V60A, D61E, A62S, and I63T. Li+ binding was d
etected by Li+ inhibition of ATP-driven H+ transport, Li+ inhibition o
f F1F0-ATPase activity, and Li+ inhibition of F-0-mediated H+ transpor
t. The Li+ effects were observed with membrane vesicles prepared from
a Delta nhaA, Delta nhaB mutant background which lacks Na+/H+ antiport
ers, and with purified, reconstituted preparations of F-0 prepared fro
m this background strain. Li+ inhibition was observed at pH 8.5 but no
t at pH 7.0. H+ thus appears to compete with Li+ for the binding site.
Li+ binding was abolished by replacement of Glu(61) by Asp or Ser(62)
by Ala. The side chains at Ala(60) and Thr(63) may act in a supportin
g structural role by providing a more flexible conformation for the Li
+ binding cavity. Thr(63) does not appear to provide a liganding group
since H+ transport in two other mutants, with Gly or Ala in place of
Thr(63), was also inhibited by Li+. We suggest that a X-Glu-Ser-Y or X
-Glu-Thr-Y sequence may provide a general structural motif for monoval
ent cation binding, and that the flexibility provided by residues X an
d Y will prove crucial to this structure.