Lj. Hwang et A. Elgamal, MIN-CUT REPLICATION IN PARTITIONED NETWORKS, IEEE transactions on computer-aided design of integrated circuits and systems, 14(1), 1995, pp. 96-106
Logic replication has been shown empirically to reduce pin count and p
artition size in partitioned networks. This paper presents the first t
heoretical treatment of the min-cut replication problem, which is to d
etermine replicated logic that minimizes cut size. A polynomial time a
lgorithm for determining min-cut replication sets for k-partitioned gr
aphs is derived by reducing replication to the problem of finding a ma
ximum how. The algorithm is extended to hypergraphs and replication he
uristics are proposed for the NP-hard problem with size constraints on
partition components. These heuristics, which reduce the worst-case r
unning time by a factor of O(k(2)) over previous methods, are applied
to designs that have been partitioned into multiple FPGA's. Experiment
al results demonstrate that min-cut replication provides substantial r
eductions in the numbers of FPGA's and pins required.