REGIONAL DIFFERENCES IN REACTIVE GLIOSIS INDUCED BY SUBSTRATE-BOUND BETA-AMYLOID

Citation
A. Hoke et al., REGIONAL DIFFERENCES IN REACTIVE GLIOSIS INDUCED BY SUBSTRATE-BOUND BETA-AMYLOID, Experimental neurology, 130(1), 1994, pp. 56-66
Citations number
73
Categorie Soggetti
Neurosciences
Journal title
ISSN journal
00144886
Volume
130
Issue
1
Year of publication
1994
Pages
56 - 66
Database
ISI
SICI code
0014-4886(1994)130:1<56:RDIRGI>2.0.ZU;2-H
Abstract
Regions of gliosis surround deposits of beta-amyloid peptide (beta AP) in senile plaques of Alzheimer's disease (AD). The association betwee n reactive astrocytes and beta AP in senile plaques is most pronounced in cortex and hippocampus but not at other anatomical sites of beta A P deposition. We hypothesized that this region-specific pathology in A D could be attributed to differences in glial reactivity in different parts of the central nervous system (CNS). To test this hypothesis, we assayed astrocytes from cerebral cortex, hippocampus, cerebellum, and spinal cord for cellular responsiveness to substrate-bound beta AP in vitro. Astrocyte reactivity was monitored by morphological changes, i ncreased deposition of chondroitin sulfate proteoglycan-containing mat rix, and alterations in proteoglycan metabolism. Based on these criter ia, only cortical and hippocampal astrocytes showed marked reactivity to immobilized beta AP. In cortical and hippocampal cultures only, imm obilized beta AP resulted in increased total radiosulfate incorporatio n into proteoglycans which was mainly found in the cell/matrix rather than in the media-associated compartment. There were also differences in the proteoglycan synthesis patterns of astrocyte cultures isolated from these CNS regions. These findings suggest that (1) astrocytes are regionally heterogenous in their reactive response to beta AP and (2) that specific molecules, in addition to beta AP, may exist following trauma or disease which trigger reactive states in astroglia in the ce rebellum or spinal cord. These local differences in the interaction be tween beta AP and surrounding astrocytes may play a role in the region -specific pathogenesis of Alzheimer's disease. (C) 1994 Academic Press , Inc.