LINDEMANN-WEIERSTRASS THEOREM FOR DRINFEL D MODULES

Authors
Citation
A. Thiery, LINDEMANN-WEIERSTRASS THEOREM FOR DRINFEL D MODULES, Compositio mathematica, 95(1), 1995, pp. 1-42
Citations number
10
Categorie Soggetti
Mathematics, General",Mathematics
Journal title
ISSN journal
0010437X
Volume
95
Issue
1
Year of publication
1995
Pages
1 - 42
Database
ISI
SICI code
0010-437X(1995)95:1<1:LTFDDM>2.0.ZU;2-1
Abstract
Let phi a F-q[T] Drinfeld module, with rank d > 0 and whose coefficien ts are algebraic over F-q(T). We denote Lambda and e(Lambda) the latti ce and the exponential function associated with phi, Omega the complex multiplication ring of Lambda, and d(1) = rank(Fq[T])Omega. Let alpha 1,...,alpha(n) epsilon F-q(T) linearly independent over Omega. We den ote t the transcendence degree over F-q(T) of the extension generated by e(Lambda) (alpha(1)),...,e(Lambda)(alpha(n)). Then the following in equality holds td greater than or equal to nd(1). This result is an an alogous for Drinfeld modules of the Lindemann-Weierstrass theorem.