Gs. Sharov, ANALOGS OF FOURIER-SERIES FOR A RELATIVISTIC STRING MODEL WITH MASSIVE ENDS, Theoretical and mathematical physics, 107(1), 1996, pp. 487-498
A description of the motions of a relativistic string with massive end
s (for the model with a finite mass on the first end and an infinite m
ass on the second end) is proposed. This approach uses the expansion o
f the string world surface into a series that is not reduced to the or
dinary Fourier series due to the nonlinearity of the problem. The stat
e equation of the string is derived from the mass shell condition for
its end. The string motions are classified, allowing linearization of
the boundary condition by a natural parametrization of the trajectory
of the moving end. The set of such world surfaces is shown to be limit
ed; for the special cases of 2 + 1- and 3 + 1-dimensional Minkowski sp
aces, all of them reduce to a helicoid.