Bs. Wu, NUMERICAL NONLINEAR-ANALYSIS OF SECONDARY BUCKLING IN STABILITY PROBLEMS, Computer methods in applied mechanics and engineering, 120(1-2), 1995, pp. 183-193
In this paper we discuss the numerical calculation of secondary buckli
ng of structures. This kind of stability problem contains two paramete
rs (one is conservative load parameter, the other is auxiliary one) an
d satisfies Z(2)-symmetry. By using the symmetry and introducing a new
parameter we construct an augmented system. The system avoids the sin
gularities of usual ones. Adjusting the newly introduced parameter, on
e can calculate a double buckling load and two corresponding buckling
modes, secondary buckling load and secondary buckling mode directly wi
thout tracing primary post-buckling path. Here, the use of the augment
ed system yields a quadratically convergent iteration scheme. We also
discuss the implementation of Newton's method solving the system - a p
artitioning procedure. With this algorithm the amount of computation i
s largely saved.