SHIFTED-UPDATE ROTATION - SIMPLE INTEGRATION OF THE MANY-LEVEL SCHRODINGER-EQUATION TO LONG TIMES

Citation
R. Bigwood et M. Gruebele, SHIFTED-UPDATE ROTATION - SIMPLE INTEGRATION OF THE MANY-LEVEL SCHRODINGER-EQUATION TO LONG TIMES, Chemical physics letters, 233(4), 1995, pp. 383-391
Citations number
28
Categorie Soggetti
Physics, Atomic, Molecular & Chemical
Journal title
ISSN journal
00092614
Volume
233
Issue
4
Year of publication
1995
Pages
383 - 391
Database
ISI
SICI code
0009-2614(1995)233:4<383:SR-SIO>2.0.ZU;2-L
Abstract
Shifted-update direct propagation algorithms are used to calculate the survival probabilities and spectra of a matrix-sealing model for vibr ational energy redistribution with 70 000 active states and nine degre es of freedom. A stabilized first-order method, shifted-update rotatio n has a simple geometrical interpretation, yet requires no storage ove rhead. Of the higher-order methods, only a third-order method executes faster in many cases, at the cost of stability and memory overhead. W e compare shifted-update methods to others applicable to sparse system s.