AMBIGUOUS LOCI OF THE FARTHEST DISTANCE MAPPING FROM COMPACT CONVEX-SETS

Citation
Fs. Deblasi et J. Myjak, AMBIGUOUS LOCI OF THE FARTHEST DISTANCE MAPPING FROM COMPACT CONVEX-SETS, Studia Mathematica, 112(2), 1995, pp. 99-107
Citations number
15
Categorie Soggetti
Mathematics, General",Mathematics
Journal title
ISSN journal
00393223
Volume
112
Issue
2
Year of publication
1995
Pages
99 - 107
Database
ISI
SICI code
0039-3223(1995)112:2<99:ALOTFD>2.0.ZU;2-2
Abstract
Let E be a strictly convex separable Banach space of dimension at leas t 2. Let K(E) be the space of all nonempty compact convex subsets of E endowed with the Hausdorff distance. Denote by K0 the set of all X is -an-element-of K (E) such that the farthest distance mapping a bar arr ow pointing right M(X)(a) is multivalued on a dense subset of E. It is proved that K0 is a residual dense subset of K(E).