AN IMPLEMENTATION EFFICIENT LEARNING ALGORITHM FOR ADAPTIVE-CONTROL USING ASSOCIATIVE CONTENT-ADDRESSABLE MEMORY

Authors
Citation
Yd. Hu et Rd. Fellman, AN IMPLEMENTATION EFFICIENT LEARNING ALGORITHM FOR ADAPTIVE-CONTROL USING ASSOCIATIVE CONTENT-ADDRESSABLE MEMORY, IEEE transactions on systems, man, and cybernetics, 25(4), 1995, pp. 704-709
Citations number
7
Categorie Soggetti
Controlo Theory & Cybernetics","Computer Science Cybernetics","Engineering, Eletrical & Electronic
ISSN journal
00189472
Volume
25
Issue
4
Year of publication
1995
Pages
704 - 709
Database
ISI
SICI code
0018-9472(1995)25:4<704:AIELAF>2.0.ZU;2-8
Abstract
Three modifications to the Boxes-ASE/ACE reinforcement learning improv es implementation efficiency and performance. A state history queue (S HQ) eliminates computations for temporally insignificant states. A dyn amic link table only allocates control memory to states the system tra verses. CMAC state association uses previous learning to decrease trai ning time. Simulations show a 4-fold improvement in learning. The SHQ in a hardware implementation of the pole-cart balancer reduces computa tion time 11-fold.