A. Tesfaye et M. Tomizuka, ZEROS OF DISCRETIZED CONTINUOUS SYSTEMS EXPRESSED IN THE EULER OPERATOR - AN ASYMPTOTIC ANALYSIS, IEEE transactions on automatic control, 40(4), 1995, pp. 743-747
Citations number
18
Categorie Soggetti
Controlo Theory & Cybernetics","Robotics & Automatic Control","Engineering, Eletrical & Electronic
The structure of the zeros of SISO continuous-time systems, which are
discretized via a zero-order hold and expressed in the Euler operator,
is studied. In particular, it will be shown that when state-space des
criptions of linear SISO continuous-time systems with relative degree
greater-than-or-equal-to 2 are discretized, then the zero dynamics of
the resulting discrete system is singularly perturbed and shows a sepa
ration of time scale. The part of the zero dynamics associated with th
e fast time scale is shown to correspond to the zeros introduced by th
e sampling process (sampling zeros). An asymptotic formula for this pa
rt of the zero dynamics is given, and implications of the result to co
ntrol design based on pole zero cancellation is discussed.