V. Gineityte, THE COMMON QUANTUM-MECHANICAL PROBLEM FOR THE WHOLE CLASS OF ALKANES AS A MATRIX GENERALIZATION OF THE DEFINITE 2-LEVEL PROBLEM, Journal of molecular structure. Theochem, 333(3), 1995, pp. 297-306
The common hamiltonian matrix for the whole class of alkanes (H) has b
een considered as a generalization of the definite two-dimensional mat
rix (h), where the usual Coulomb and resonance parameters are replaced
by the N x N-dimensional matrices (N stands for the number of chemica
l bonds in an alkane). A similar relation between the two analytical e
xpressions for the one-electron density matrices of alkanes and of the
relevant two-level two-electron system described by the hamiltonian m
atrix h has been established. The block-diagonalization procedure for
the matrix H following from the Brillouin theorem and resulting in the
localized MOs (LMOs) of alkanes has been shown to be an analogous mat
rix generalization of the usual eigenvalue problem for the two-dimensi
onal matrix h. These results imply a kind of similarity between the cl
ass of alkanes and the unique two-level system and form the basis for
describing the former as a single quantum-mechanical object. The relat
ion between the actual occupation numbers of the bond orbitals and the
extent of delocalization of the respective LMOs and the proportionali
ty of the stabilization energy to the total delocalization of the occu
pied LMOs have been shown to result from the established similarity be
tween alkanes and the two-level system.