ADAPTIVE BOUNDARY-ELEMENT METHODS FOR SOME FIRST KIND INTEGRAL-EQUATIONS

Citation
C. Carstensen et Ep. Stephan, ADAPTIVE BOUNDARY-ELEMENT METHODS FOR SOME FIRST KIND INTEGRAL-EQUATIONS, SIAM journal on numerical analysis, 33(6), 1996, pp. 2166-2183
Citations number
26
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00361429
Volume
33
Issue
6
Year of publication
1996
Pages
2166 - 2183
Database
ISI
SICI code
0036-1429(1996)33:6<2166:ABMFSF>2.0.ZU;2-D
Abstract
In this paper we present an adaptive boundary element method for the b oundary integral equations of the first kind concerning the Dirichlet problem and the Neumann problem for the Laplacian in a two-dimensional Lipschitz domain. For the h-version of the finite element Galerkin di scretization of the single layer potential and the hypersingular opera tor, we derive a posteriori error estimates which guarantee a given bo und for the error in the energy norm (up to a multiplicative constant) . Following Eriksson and Johnson this yields adaptive algorithms steer ing the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically the expected convergence rate.