APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR HEAT-EQUATION

Citation
C. Fabre et al., APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR HEAT-EQUATION, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 125, 1995, pp. 31-61
Citations number
21
Categorie Soggetti
Mathematics, General",Mathematics,Mathematics
ISSN journal
03082105
Volume
125
Year of publication
1995
Part
1
Pages
31 - 61
Database
ISI
SICI code
0308-2105(1995)125:<31:ACOTSH>2.0.ZU;2-S
Abstract
This article is concerned with the study of approximate controllabilit y for the semilinear heat equation in a bounded domain Omega when the control acts on any open and nonempty subset of Omega or on a part of the boundary. In the case of both an internal and a boundary control, the approximate controllability in L(p)(Omega) for 1 less than or equa l to p < + co is proved when the nonlinearity is globally Lipschitz wi th a control in L(infinity). In the case of the interior control, we a lso prove approximate controllability in C-0(Omega). The proof combine s a variational approach to the controllability problem for linear equ ations and a fixed point method. We also prove that the control can be taken to be of ''quasi bang-bang'' form.