EXTREMAL EIGENPROBLEM FOR BIVALENT MATRICES

Citation
Ra. Cuninghamegreen et P. Butkovic, EXTREMAL EIGENPROBLEM FOR BIVALENT MATRICES, Linear algebra and its applications, 222, 1995, pp. 77-89
Citations number
11
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00243795
Volume
222
Year of publication
1995
Pages
77 - 89
Database
ISI
SICI code
0024-3795(1995)222:<77:EEFBM>2.0.ZU;2-N
Abstract
For a general n x n real matrix (a(ij)), standard O (n(3)) algorithms exist to find lambda, x(1),..., x(n) such that max (a(ij) + x(j)) = la mbda + x(i) (i = 1,..., n). j = 1,..., n It is known that lambda is un ique and equals the maximum cycle mean of(a(ij)). We consider the case when all the elements a(ij) take values in the real binary set (0, 1) , and we present algorithms which determine lambda, x(1),..., x(n) in O (m + n) time, where m is the number of nonzero elements of (a(ij)). We show that these algorithms may in fact be applied to bivalent matri ces over any linearly ordered, commutative radicable group.