SOME NEW ASYMPTOTIC PROPERTIES FOR THE ZEROS OF JACOBI, LAGUERRE, ANDHERMITE-POLYNOMIALS

Citation
H. Dette et Wj. Studden, SOME NEW ASYMPTOTIC PROPERTIES FOR THE ZEROS OF JACOBI, LAGUERRE, ANDHERMITE-POLYNOMIALS, Constructive approximation, 11(2), 1995, pp. 227-238
Citations number
16
Categorie Soggetti
Mathematics, Pure",Mathematics
Journal title
ISSN journal
01764276
Volume
11
Issue
2
Year of publication
1995
Pages
227 - 238
Database
ISI
SICI code
0176-4276(1995)11:2<227:SNAPFT>2.0.ZU;2-9
Abstract
For the generalized Jacobi, Laguerre, and Hermite polynomials P-n((alp ha n,beta n))(x), L(n)((alpha n))(X), H-n((gamma n))(X) the limit dist ributions of the zeros are found, when the sequences alpha(n) or beta( n) tend to infinity with a larger order than n. The derivation uses sp ecial properties of the sequences in the corresponding recurrence form ulas. The results are used to give second-order approximations for the largest and smallest zero which improve (and generalize) the limit st atements in a paper by Moak, Saff, and Varga [11].