RATES OF EIGENVALUES ON A DUMBBELL DOMAIN - SIMPLE EIGENVALUE CASE

Authors
Citation
Jm. Arrieta, RATES OF EIGENVALUES ON A DUMBBELL DOMAIN - SIMPLE EIGENVALUE CASE, Transactions of the American Mathematical Society, 347(9), 1995, pp. 3503-3531
Citations number
22
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
00029947
Volume
347
Issue
9
Year of publication
1995
Pages
3503 - 3531
Database
ISI
SICI code
0002-9947(1995)347:9<3503:ROEOAD>2.0.ZU;2-6
Abstract
We obtain the first term in the asymptotic expansion of the eigenvalue s of the Laplace operator in a typical dumbbell domain in R(2). This d omain consists of two disjoint domains Omega(L), Omega(R) joined by a channel R(e)psilon of height of the order of the parameter epsilon. Wh en an eigenvalue approaches an eigenvalue of the Laplacian in Omega(L) boolean OR Omega(R), the order of convergence is epsilon, while if th e eigenvalue approaches an eigenvalue which comes from the channel, th e order is weaker:epsilon\In epsilon\. We also obtain estimates on the behavior of the eigenfunctions.