Background: Diaphragmatic fatigue causes respiratory failure, for whic
h aminophylline has been used as therapy. Because the mechanism of act
ion of aminophylline in reversing diaphragmatic fatigue is unclear, we
used in vivo P-31 magnetic resonance spectroscopy (MRS) to determine
the relation between diaphragmatic activation, force output, and aerob
ic metabolism. Methods: Bilateral phrenic stimulation was used to pace
the diaphragm in pentobarbital-anesthetized piglets (6-10 weeks old;
n = 44). Esophageal and abdominal pressures were measured to calculate
transdiaphragmatic pressure (Pdi) (Pdi = abdominal pressure - esophag
eal pressure) as an index of force output, Activation was determined b
y the amplitude of the compound action potential of the diaphragmatic
electromyogram. Aerobic metabolism was assessed with a P-31;MRS surfac
e coil on the right hemidiaphragm with the animal in a 4,7-T magnet, T
he animals were divided into four groups based on aminophylline loadin
g dose: saline, aminophylline 10 mg/kg (A10), aminophylline 20 mg/kg (
A20), and aminophylline 40 mg/kg (A40). After aminophylline loading th
e diaphragm was paced for 25 min followed by a 10-min recovery. Result
s: Aminophylline concentrations were 12.2 +/- 0.7, 21.9 +/- 2.4, and 4
4.9 +/- 3.6 mg/l in the A10, A20, and A40 groups, respectively, Compou
nd action potential amplitude decreased in all groups by 30% after 25
min of pacing. Conversely, Pdi remained at 100 +/- 3% of the initial v
alue after 5 min of pacing in the A40 group but decreased to 75 +/- 3%
in the saline group. Pdi recovered completely (103 +/- 17%) in the A4
0 group but remained depressed (72 +/- 6%) in the saline group, Pdi va
lues were intermediate in the A10 and A20 groups. MRS data revealed in
adequate energy supply/demand ratio in the saline group such that the
ratio of inorganic phosphate to phosphocreatine (Pi/PCr) increased to
1.01 +/- 0.09 after 5 min of pacing, Pi/PCr remained unchanged in the
A40 group and was intermediate in the A10 and A20 groups. beta-Adenosi
ne triphosphate and intracellular pH did not differ among groups or as
a function of pacing. Diaphragmatic blood now increased from a restin
g value of 35-60 to 300-410 ml . min(-1). 100 g(-1) during pacing in a
ll groups and was not affected by aminophylline dose. Conclusions: Ami
nophylline, in a dose-dependent fashion, delays the onset of fatigue a
nd improves recovery from fatigue, Delayed fatigue is associated with
improved aerobic metabolism as reflected in a low Pi/PCr ratio.