A. Cotsiolis et D. Iliopoulos, NONLINEAR ELLIPTIC-EQUATIONS WITH SUPERCR ITICAL SOBOLEV GROWTH, Bulletin des sciences mathematiques, 119(5), 1995, pp. 419-431
Let S-n be the unit sphere of R(n+1), Omega a smooth bounded domain of
R(n) and a (x), f (x) two functions of C-infinity (Omega) or C-infini
ty (S-n). We study the existence and the multiplicity of positive solu
tions and of nodal solutions for the equations Delta u + a (x)u = f(x)
\u\(p-2)u on S-n or on Omega with u = 0 on partial derivative Omega. S
ymmetry assumptions allow us to take supercritical values p greater th
an or equal to 2n/(n - 2) of the exponent.