The general theory of the separation of variables in Hamilton-Jacobi a
nd Laplace-Beltrami equations on the SU(p,q) hyperboloid is used to in
troduce completely integrable Hamiltonian systems on 0(p,q) hyperboloi
ds. Each of the q+1 different Cartan subalgebras of su(p,q) leads to a
different integrable 0(p,q) potential. Different complete sets of int
egrals of motion are obtained for each of the integrable systems.