UNITARITY AND COMPLETE REDUCIBILITY OF CERTAIN MODULES OVER QUANTIZEDAFFINE LIE-ALGEBRAS

Authors
Citation
Yz. Zhang et Md. Gould, UNITARITY AND COMPLETE REDUCIBILITY OF CERTAIN MODULES OVER QUANTIZEDAFFINE LIE-ALGEBRAS, Journal of mathematical physics, 34(12), 1993, pp. 6045-6059
Citations number
25
Categorie Soggetti
Mathematical Method, Physical Science","Physycs, Mathematical
ISSN journal
00222488
Volume
34
Issue
12
Year of publication
1993
Pages
6045 - 6059
Database
ISI
SICI code
0022-2488(1993)34:12<6045:UACROC>2.0.ZU;2-W
Abstract
Let U(q)(g) denote the quantized affine Lie algebra and U(q)(g(1)) the quantized nontwisted affine Lie algebra. Let O(fin) be the category d efined in Sec. III. It is shown that when the deformation parameter q is not a root of unit all integrable representations of U(q)(g) in the category O(fin) are completely reducible and that every integrable ir reducible highest weight module over U(q)(g(1)) corresponding to q > 0 is equivalent to a unitary module.